500 research outputs found

    Use and Communication of Probabilistic Forecasts

    Full text link
    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications

    Model-based Methods of Classification: Using the mclust Software in Chemometrics

    Get PDF
    Due to recent advances in methods and software for model-based clustering, and to the interpretability of the results, clustering procedures based on probability models are increasingly preferred over heuristic methods. The clustering process estimates a model for the data that allows for overlapping clusters, producing a probabilistic clustering that quantifies the uncertainty of observations belonging to components of the mixture. The resulting clustering model can also be used for some other important problems in multivariate analysis, including density estimation and discriminant analysis. Examples of the use of model-based clustering and classification techniques in chemometric studies include multivariate image analysis, magnetic resonance imaging, microarray image segmentation, statistical process control, and food authenticity. We review model-based clustering and related methods for density estimation and discriminant analysis, and show how the R package mclust can be applied in each instance.

    Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications

    Get PDF
    Food authenticity studies are concerned with determining if food samples have been correctly labelled or not. Discriminant analysis methods are an integral part of the methodology for food authentication. Motivated by food authenticity applications, a model-based discriminant analysis method that includes variable selection is presented. The discriminant analysis model is fitted in a semi-supervised manner using both labeled and unlabeled data. The method is shown to give excellent classification performance on several high-dimensional multiclass food authenticity datasets with more variables than observations. The variables selected by the proposed method provide information about which variables are meaningful for classification purposes. A headlong search strategy for variable selection is shown to be efficient in terms of computation and achieves excellent classification performance. In applications to several food authenticity datasets, our proposed method outperformed default implementations of Random Forests, AdaBoost, transductive SVMs and Bayesian Multinomial Regression by substantial margins
    • ā€¦
    corecore